Jubject	HERIVIAL ENGIN	EERING-I (TH-4)				
Name of the Faculty-Bibatsa Panda						
MONTH	MODULE/UNIT	COURSE TO BE COVERED	CLASSES REQUIRED	REMARKS (IF ANY)		
July	Module-1	Thermodynamic concept & Terminology	12			
		Thermodynamic Systems (closed, open, isolated)	1			
		Thermodynamic properties of a system (pressure, volume, temperature	2			
		entropy, enthalpy, Internal energy and units of measurement).	1			
		Intensive and extensive properties	1			
		Define thermodynamic processes, path, cycle, state, path function, point function.				
		Thermodynamic Equilibrium. Quasi-static Process	1			
		Conceptual explanation of energy and its sources	1			
		Work , heat and comparison between the two. Mechanical Equivalent of Heat.	3			
		Work transfer, Displacement work	2			
	Module-2	Laws of Thermodynamics	12			
		State & explain Zeroth law of thermodynamics.	1			
		State & explain First law of thermodynamics. Limitations of First law of thermodynamics	1			
		Application of First law of Thermodynamics(steady flow energy equation and its application to turbine and compressor)	3			
		Second law of thermodynamics (Clausius & Kelvin Planck statements).	2			
		Application of second law in heat engine, heat pump, refrigerator & determination of efficiencies & C.O.P	3			
		solve simple numerical	2			
	Module-3	Properties Processes of perfect gas	10			
		Laws of perfect gas, Boyle's law, Charle's law, Avogadro's law,	1			
		Dalton's law of partial pressure, Guy lussac law	1			
		General gas equation, characteristic gas constant, Universal gas constant.	1			
		Explain specific heat of gas (Cp and Cv) Relation between Cp & Cv.	1			

	Enthalpy of a gas.	1
	Work done during a non- flow process.	
	Application of first law of	2
	thermodynamics to various non flow	
	process (Isothermal, Isobaric, Isentropic	
	and polytrophic process) Solve simple problems on above.	2
		1
 Module-4	Free expansion & throttling process.	8
iviodule-4	Internal combustion engine	•
	Explain & classify I.C engine.	1
	Terminology of I.C Engine such as bore,	1
	dead centers, stroke volume, piston	
	speed &RPM.	
	Explain the working principle of 2-stroke	4
	& 4- stroke engine C.I & S.I engine.	
	Differentiate between 2-stroke & 4-	2
 20-1-1-5	stroke engine C.I & S.I engine.	10
Module-5	Gas Power Cycle	10
	Carnot cycle	1
	Otto cycle.	2
	Diesel cycle.	2
	Dual cycle.	2
	Solve simple numerical	3
Module-6	Fuels and Combustion	08
	Define Fuel.Types of fuel	2
	Application of different types of fuel.	2
	Heating values of fuel	2
	Quality of I.C engine fuels Octane	2
	number, Cetane number	